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NOMENCLATURE

A area of beam cross-section

d amount by which beam ends are moved together

"dcr end shortening which first produces beam buckling

E Young's modulus of beam material

f average zero-crossing frequency of beam

h distance from centroidal axis to outermost beam fibers

SI moment of inertia of beam cross-section about centroidal
axis perpendicular to plane of bending

I nondimensional impulse pressure loading

L beam length

N axial load, pbsitive" in compression

Ncr axial compressive buckling load of beam

SNO initial axial compressive load in beam
!A/L"A L2

N nondimensional axial compressive load parameter (ML)

NoL

Snondimensional initial compressive load parameter (-aE-)

p uniform tranverse pressure

pnondimensional transverse pressure parameter EPr

'•'ii• PO nondimensional time average of random pressure distribution

r radius of gjyration of beam cross-section (VT)

S0  power spectral density of white noise pressure history

nondimensional power spectral density parameter

32 L6  __ASO2 To
E I4 So _0

Salternate power spectral density parameter (-5-•-;8- )

t time

T nondimensional time parameter (TY t

ý; w beam deflection from buckled equilibrium position

wm amplitude of mth term in Fourier series expansion of w

WO wamplitude of initial buckled shape

W. static deflection of buckled beam from straight reference

axis

•' 4'



W0 Wm

WOwm nondimensional deflection amplitude parameters (-- ,-)

x distance along beam IPA

viscous damping coefficient of beam material

AL additional changes of horizontal length of the beam if
the ends were unrestrained

AL0 initial change of horizontal length of buckled beam

AN chainge in axial load due to beam bending
6mn KroneckEr delta (=0 if m On, =1 if m =n)

2~

nondimensional viscous damping parameter

P+ density of beam material

±aav the average stress in beam outer fibers

~ax +maximum stress in beam outer fibers

Gr0 standard deviation of whit- noise pressure distribution

-±- average stress parameter at outermost fibers of beamav
,av L2

nE

"•r~ax maximum stress parameter at outermost fibers of beam

Cmax L 2

r•E 4 4 0-

nondimensional standard deviation parameter (--5- -r) I
J static static stress parameter for initially buckled beam
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INTRODUCTION

Aircraft structural components such as engine air intake ducting
and rear fuselage and empennage structures which are located in the vi-

cinity of jet engine exhausts experience combined heating and random

dynamic excitation which result from the ac~oustic or pseudoacoustic

noise emitted by the jet efflux. In addition, in the VTOL and V/STOL

operational modes of projected advanced aircraft, combined thermal and

acoustic environments can be expected in areas of the wing and/or fuse-

'lage structure - the locations and magnitudes being highly dependent

upon vehicle/engine configurations. The combined thermal-acoustic en-

vironment can also occur in different operational modes of re-entry

vehicles such as the space shuttle.

A completely rigorous analytical mnethod of obtaining the combined

effects of thermal and acoustic loading is unavailable. Therefore, pre-

sent design practices rely heavily on component testing in a simulated

envirionment. Such tests, however, which are more in the nature of qual-

ification tests, generally do not yield quantitative data. A program to

obtain a better quantitative mwosure of the effects of the thermal-acoustic

environment has been described in reference 1. Among the qualitative phe-

nomena which have been revealed experimentally by that investigation is

that there are limited ranges of temperature and acoustic environment which

cause violent oil-canning vibrations of plate structures. If the sound

pressure level of the random• acoustic environment is kept constant and the

1L
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steadyastate temperature is increased, the RMS strain response was ob-

served to increase slowly until some "critical" temperature was reached

beyond which oil-canning vibrations occurred and the RMS strain response

w increased rapidly at first. As the steady-state temperature was further

increased, the RMS strain response reached a peak value and then decreased

rapidly,'to some value lower than the pre-critical level. The large stress

reversals that occur during oil-canning vibrations in sufficiently high

"intensity acoustic environments can lead to early fatigue. failure.

The phenomenon is readily explained in a qualitative fashion as a
consequence of buckling of the plate due to the thermal environment. As

the steady-state temperature and the inplane compressive thermal stresses

increase, the stiffness of the plate decreases until buckling occurs. If

the teml dture is somewhat higher, the plate would be in equilibrium in

and the acoustic load causes oil-canning from one to the other. As the

steady-state temperature and hence the amplitude of the static buckled con-

figureation increases, however, the energy level of the acoustic loading

becomes insufficient to produce oil-canning vibrations. A quantitative

description of this phenomenon and of the regions of critical thermal-

acoustic environment interaction is lacking, however.

Although the experimental data obtained in reference 1 were used to

define a region of instability, the data are insufficient to inspire con-

fidence in the accuracy or reisonableness of the semi-empirical criterion.

The implication of this criterion is that oil-canning will occur only

when the amplitude of the buckle is between 1.5 and 6 times the predicted

2
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RMS deflection of the uncompressed plate under uniform random pressure,

provided the RMS deflection is greater than 0.3 times the plate thickness.

While the upper li'mit is possible there does not appear to be any val d

reason for the lower limit to exist. Since the RMS value of deflection is

roughly related to the square root of the power spectral density of the

laoding intensity, the criterion would appear to preclude snap-through for

very high loading intensity.

A perusal of the literature indicates that the only analytical inves-

tigation of a similar problem is available in reference 2. Here the in-

terest centers on the time required for the maximum deflection of a simply

supported curved arch to first reach or exceed a certain critical value.

The method used in reference 2 can be described as an "experimental" one

since the equation of motion of the arch, represented by that for an equi-

valent single-degree-of-freedom system, is integrated numerically for load-

ings given by a random-number generator. Enough of these numerical experi-

ments are conducted to yield a curve of the probability of first-passage

snap-through at a given time as a function of time. The response of axi-

ally compressed initially buckled beams to deterministic transverse load

has been discussed in a number of papers. The buckling and snap-through

behavior of steep buckled simply supported beams under concentrated and

uniform static transverse loading is investigated in reference 3. The
*1

snap-through of shallow buckled clamped beams due to harmonic support

excitation was studied in reference 4. In references 5 to 8 results for

the small large amplitude free vibrations of buckled beams are given. The

response of such structures to random loading has not been studied how-

ever.

3
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In view of the meager available literature on the problem, an inves-

tigation of the response of initially buckled beams was undertaken through

AFOSR Grant No. 79-0013 with the University of Southern California. The

presen~t report describes the work done toward further understanding of the

phenomenon. A number of investigations were carried out and are presented .;,I

as separate sections. Included are investigations of the dynamic buckling

of initially buckled simply supported beams under deterministic load, Monte

Carlo determination of first snap-through probability, calculated RMS re-

sponse under simulated random loading and comparison with the results of

the method of equivalent linearization. Equivalent linearization and ac-

". tual experimental results for clamped beams are also given.

I
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Chapter 1

EQUATION OF MOTION

71;The equation of motion of an initially buckled beam is derived herein

under the assumption of .small strains, moderately large deflections, and

Snegligible longitudinal inertia. A more rigorous derivation incorporating

very large deflections and strains is given in reference 9 but is consid-

ered to be impractical for computational purposes. -,

Consider an initially straight beam whose ends are brought together

a certain amount, d. If d is les than a critical value dcr, the bearti is

compressed only and does not bend. The axial compressive load NO in the

beam is less than the Euler buckling load and is given by

.EA dj
SL,

If, however, d is greater than dcr, the beam buckles with a deflection

W (x). For relatively small buckle amplitudes the axial compressive load

.'"NJ remains constant at the Euler buckling load Ncr.
4 F)or a simply supported beam the Euler buckling load is given by

2•2EI
POWN L (1.2)

ELL
The initial buckled shape is a half sine wave

ws - w0 sin1r (1.3a)

"with an amplitude approximately given by

Vr I

Qf5



(1.3b)

and

dr Tr2 (1.3c)dcr-

If the beam is clamped at both ends the Euler buckling load is now
4'4E

Ncr 2E (1.4)

The initial buckled shape is given by

WO (1-cos T) (1.5a)

with an initial amplitude given by Eq.. (1.3b) where now

4n2I I-dc ( 1.5 b) ,;.

With the ends of the beam now fixed in the compressed position, the

beam is next subjected to uniformly distributed time dependent loading

(Fig. 1). The equation of motion of the beam, including viscous damping,

is given by

-~4 24(W+W) a (w+w 2
E + N W+ +P -0 (1.6)•)4 x2 71 at--Z -

ax ax a t

wherc w is the additional beam deflection and N is the axial compressive

force exerted on the beam by the supports.

6
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The change in the axial cunipressive force from its initial value N 0

goes during its motion. The amount by which the ends of the beam move

together prior to motion is equal to the sum of the change of length due

to the critical load and th~e amount by which the ends move together due

to beam bending. Thus

L
t4OL 1 dw5 ()

0

where w vanishes an No 0 is les thn(N it)d ws given by Eqs.(1.3a) or

fro it stticposition, the beam ends w~ould tend to move, were they not

fixe inposiion anadditional amount 'qual to

(w1 2 /dw5 2

This change of position must be negated by stretching the beam by an ax-

ial tensile force given by

L

EML 2 wf w

2 ~Thus

EAr ow (( w
N N0 7 J r +2 2j-dx (1.9b)

.8
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1 For a simply supported initially buckled beam, let the additional dy-

namic deformation be given by

Is in -x
sIn

,A Then the equations for the time dependence of the coefficients wm may be

. obtained by substitution in Eq.(1.6) to yield, in nondimensional form,

d2•m 2 2

+ m -+ (m m 1,3,5... (1.11a)
"dT'd' " - O i n i m'

Q 2 - (m2m o m- 24,6... (1.llb)
KI dT- ( m

wi .h

t~ij n1 2 n

The nature of the equations is best illustrated by considering only

the term for m equal to unity. Then Eqs.(1.11) reduce to

&d di Q-I T +d-U" + T ( + °(1 +2°) + (ii

Swhich is of the form of the equation of motion of a nuss-spring system

with a nonlinear spring stiffnes!,. The restoring spring force is shown

as a function of in Fig. 2. The spring resistance is of the sof-

tening type as decreases from 0 and is actually destabilizing when

Li' 
9



C*4 0.14-

0.12-

1 0.08-
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0.02-

2. 20-15-. -0.504D5

1 -0.04
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j 4Fig. 2. One Mode Approximation to Beam Restoring Force
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the beam becomes susceptible to snap-through from the buckled position on

one side of the initially straight axis to the buckled position on the

other side. Thus the beam would be expected to vibrate about the static

buckled position for small excitations but to snap back and forth between

the two equilibrium positions for largerr-excitations.

The succeeding chapters describe various investigations performed

with the use of' these equations.

I I
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Chapter 2

DYNAMIC STABILITY-OF SIMPLY SUPPORTED INITIALLY

BUCKLED BEAMS UNDER DETERMINISTIC LOADING

In order to get some idea of the order of magnitude of pressures to

be considered, the dynamic stability of initially buckled beams under de-

terministic loading is investigated first. The analysis of snap-through

under time-dependent loading is approximate and is similar to the inves-

tigation presevitted in reference 10 for shallow arches. The theory is lim-

ited to consideration of a single temn in the series expansion of the de-

flection function for symmetric snap-through and to two terms for asym-

metric snap-through. In the latter case the assumption is made that the

minimum critical pressure is that -for which the .trajectory of motion passts

through the saddle-point with zero velocity and is equivalent to an eney-y

criterion for instability. The accuracy of the limitation of the deflec-

tion function and of the energy criterion has been investigated for shallow

arches in references 11 and 12. It was concluded that while the accuracy of

the results is limited, especially in the case of impulse type loading, the

numbers obtained are reasonable "ball-park" estimates of critical pressure

loadings and require, of course, considerably less computation than that

involved in step-by-step integration of the coupled equations rf motion

for multiple series terms.

For the investigation of dynamic stability of initially buckled simply

supported beams under deterministic loading, Eqs.(.1.1i) are oised with the

damping parameter taken as zero and only W and w2 retained in the infi-

nite series of Eq.(1.10). Then the pertinent equations of motion reduce

to
12
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2d 2 2 -2
-P + L-(YYý;+w~w) -4w2 ]ljw (2. 1a)
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1w-2W (2.13b)
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1~ "2 2

;013 iw0 (2.2)
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At this value of load the beam snaps through to an equilibrium position

on the other side of the unbuckled beam axis.J

A solution incorporating all of the symmetric terms of Eq.(1.1O) can ;.

be obtained as well. Equations (1.11) for the static loading becomne

I ( 1 4 - -i (2.5a)

")2 ) 2wm:(m

(,-m )m2  = m =3,5,... (2.5b)
"i" in

ýM" Solution of Lqs..(2.5) and substitution in Eq.(1.llc) then yields a trans-

cendental equation for N as

m1 1,3,5

1- 2 -2 ~2 1 i tn -Y'or1+TW i2 +( -5 +sec12+ 0,+sec (2.6a)

III

or1

1 1.

F22 tan

+ 4- +"sec 4



'i-4
2 ta 1 3 2Wr 1 tan ~N

1 N 1 45 2 2
+ - + L sec2

-4(3 tnprN 11 2T 2 2U Ra
1-2CoT

1+n ;w NN 11_________/

(2.7) j
Equations (2.6b) and (2.7) are thus parametric equations for the maximum ,,.

value of • as a function of w.

Rather than solve Eq.(2.7) for given values of W0 , the error of the

approximate solution given by Eq.(2.4) may be indicated by assuming val-

ues of N and calculating the corresDordding value of O from Eq.(2.7).

This value of Wo is then used in Eqs.(2.6) and (2.8b) to obtain approxi-

mate and "exact" values of Pmax" The range of values of R that may be

considered in Eq.(2.7) is 1gN57.4981. At the lower limit is equal

to zero, while at the upper limit the denominator of the right side of

Eq.(2.7) vanishes so that W0 is infinite. The results of calculations

made with Eqs.(2.4), 2.6b), and (2.7) are %nown in Fig. 3. It is read-

ily seen that the one term approximation and the exact solution yield

almost identical results so long as W is less than about 6. For large

values of the exact solution is approximated by

p 5.856w0  (2.8)

so that the exact and approximate solutions rapidly diverge.

As W increases it is possible that buckling may occur in an anti-

symmetric mode. The equation of motion for w is given by Eq.(1.11b)

asi'!1

"15
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2

So long as the coefficient of ~2or the right side of Eq.(2,9) is neg-

= ative, a small antisyiiunetric disturbanq- remnains small; when the coef-

- ficient becomas positive, however, It;?e antisywmnetric motion is unstable.

Buckling in an antisymnetric mode thus can first occur if the coeffi-

cient of w2 in Eq.(2.9).vanishes, i.e., when

1u4 (2.10)

for which the critical value of is given by Eq.(2.6b) as

16TT-

:i. w0-_12 (2.11a)

Equation (Z.lla) is valid if the value of R is less than the value at

which snap-through occurs. Then Eq.(2.7) with Nequal to 4 y~ields

Al2 87+8ar2
> 125+B 4.2477 (2.11b)

The one term approximation yields the result

36VJ-12 (2.12a)

provided

17
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--' > VDT= 4.2426 (2.12b)

which is in excellent agreement with the exact result. *

It is interesting to compare the values obtained above with those of

a shallow arch. which has a built-in initial shape identical to that of

the buckled beam. The analysis of reference 10 yields the following cri-

tical pressures:

2 T
S+ 2< ;o< (2.13a)

= O+3\; 3 16 >Mv'- (2.13b)

For ;o less than 2, there is no snap-through and hence no critical pres-

Ssure. The two sets of results are shown in Fig. 4 where it is seen that
S~the buckled beam has a critical uniform pressure which is always less than •

that of the shallow arch. For values of Wo greater than about 4, the cri-

tical pressure of the buckled beam is about 25% less than that of the arch.

If o is less than 4 the ratio of the critical load of the buckled beam to

that of the shallow arch decreases. If is 2, for example, the ratio

is equal to 0.385.

S*•. ~2.2 Dynamic Buckling Due to Step Loading ,.

Consider now the situation that occurs when the constant pressure is

2suddenly applied. If th deformation process is symmetric,uwith 5 con-

stant a first integral of Eq. (2.1a) subject to the initial conditions of

.18-* .*]8 - -!**- 4- -

" 4 k~a .& .-.rA L.
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-- . ..... -- -.-.

1 (2.14a)

is given by 2I
('7 ITL (1I0 ) (2.14b)

The minimum displacement is obtained when d~i/dT vanishes. Thus

3-3

i::' 
I• =+4 

+ 4 .
(2.15)

"WO L\'° io/ ) o/

The curve of 16/O versus i1/i0 has a relative maximum at

i o -• ] 
( 2• . 1 6 a )

at which

2 -3
U;. w O 

(2.16b)

For • less than that value, the beam vibrates with a minimum total dis-

placement on the same side of the straitht axis as the initial buckle.

For j greater than that value, the beam has a minimum displacement which

is beyond the buckled equilibrium position on the other side of the axis.

Thus the critical value of p is given by Eq. (2.16b) which is 23% less

than the value for static buckling given by Eq.(2.4).

It is possible, however, for dynamic buckling to occur by a combina-

tion of sy•mnetric and antisymmetric motion. In this case the equations of

4• 20
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motion are giveni by Eqs.(2.1a) and (2.1b). A saddle point in the trajec-
tories of constant potential energy occurs when the right sides of Eqs.

(2.1) vanish, yielding "I
~ w 1 = ~p(2.17 a)

1 2
, I E.(,1a) s ulipie .bywdwI, -12.7) is2ulipled by)• IC

and the two are added, a first integral of the motion satisfying the ini-

tial conditions of zero velocity and displacement is

2(2.18)

* The minimum pressure for wh.ich snap-through will occur is that for which

the trajectory of motion passes through the saddle point with zero velo- I
city. The substitution of Eqs.(2.17) into the right side of Eq. (2.18)
then yields 2

0o (+. 1 0

•:" ~from which the critical pressure is obtained asT

+= 1(20") (2.19b)
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The negative sign in Eq.(2.19b) is determined from the condition that the

right side of Eq.(2.17b) must be positive, which also yields the result

that Eq.(2.19b) is valid only if

w0> o (2.20)

At the value of Wo given by Eq.(2.20) the critical values of • given by

Eqs.(2.16b) and (2.19b) are identical. It is interesting to note that

as W increases, the critical step pressure approaches the critical static

pressure. The ratio of the two varies from 0.77 for low values of w

(j.0< 3 vr) to a minimum of 0.71 at W -2r and thenceforth increases to

unity. For W equal to 10, for example, the ratio is 0.80.

Equivalent critical pressures for the shallow arch may be obtained
from reference 10 as

If,

+( ]2a (2. 21a)

- 4(Wo-v) ' > (2.214)

These bre compared with the values given by Eqs. (2.16b) and (2.19b) in

Fig. 5. It may be seeki that the ratio of the critical pressure for the

initially buckled beam and that of the shallow arch varies from 0.5 at

SA6 to o .75 for w, >

22
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2.3 Dynamic Buckling-Due to an Impulse Load
2*1

Consider now an impulse load given by

pUI6(T) (2.22a) ~

where 6(T) is thg Dirac delta function. Fromi Eq.(2.la) the.Initial velo-

&ci ty of the synunetri c mode of deformation of the beam can be found to be

I (2.22b)

Integration of Eq,(2.la.) with equal to zero and subject to the initial

conditions(2.23)1

y~ ields the velocitya

(:) 2 1
0)2 2(2.24)

The beo, reaches its-minimum position when 6 1fdT vanishes at

Ii 4.CO)I j2 * 2 ,/y (2.25)

Snap-through will not occur so long as ,;he minimum value of is is

gratxthan zero. Thus the criti,.d1 value of I is

-2
-w6

t 0r (2.26)
2aZ

~ 1 24



If motion in an antisymmuetric mode also occurs the equations of motion

are given by Eqs.(2.1), wit'i given by Eq.(2.22a). A saddle point now oc-

curs when 74

WO W1
02 1 21)(2.27b)

The first integral of the motion satisfying the initial conditions

-1 w W (2.28)

is now

-2 -2 2

1 12 2(.12 -12 (2.29)

Snap-through will occur if the trajectory passes through the saddle point.

This will occur at a minimum impulse of

I V3( ~6) (2.30a)

Equation (2.27b) indicates that this solution is valid if

0W > 2a'~ (2.30b) ~

The corresponding expression for mixed mode buckling of a shallow

arch can be obtained from reference 10 as

25



1 '14 -2 ~ 2 63/2w6+4W; 324w-o( 3r2 >o> (2.31a)

14-) 1 (2.31b)

The results given by Eqs.(2.26) and 2.30) for the initially buckled.1Ibeam and by Eqs.(2.31) for the shallow arch are compared in Fig. 6. For
sufficiently large values of the initial amplitude, thie ratio of the cri-

tical impulses is given by

initially buckled beam 0.5(.2

1shallow~ arch

2.4 Lowest Free Vibration Frequency

A final result that may be obtained is the lowest free vibration fre-

queney of symmnetric motion.
ýX-, ,I

Let the, beam be displaced and initially held at rest so that at time

T equal to zero

()>0 (2.33a)

1 10

Then the first integral of the equation of motion is given by
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The solution of Eq.(2.34) is periodic and may be expressed as

2I w+w

T ~ 1 2 sin' 1 . )z~

(2.35a)

ii+ý

jsin 4s-
4-ý, 10os

10 0+1)

if >W - 1), where F(aO) is an elliptic function of the first kind.

Tenondimenslonal period of vibration is then

AT K$ sln-I 11 (2.36a)
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if w0'(vflz- 1)ýO, with K(x) the complete e11ipti, Fl¼nction of the first

kind. Since the nondimensional period AT is 2n for a straight unloaded

Ssimply supported beam, the frequency ratio may be written as

f f 1+ lOsin-\ 2 1 (
fo~o WO 10l•Z(.3a

for ýi0/.q0<Yv7-,1 and

1f sin"1 (2.37b)

001gu+

for >•aolwo>v--l. The results of these equations are shown graphically in

Fig. 7. Note that the frequency vanishes when is equal to vl--, but

is extremely sensitive to amplitude of vibration. Identical results are

implied by the analysis of reference 2 for clamped buckled beams.

If N is less than VE-1, the beam oscillates about the buckled po-

sition with the minimum amplitude given by the value of for which the

argument of the elliptic integral in Eq.(2.35a) becomes equal to 900. Then

ft 2
min

w0 ;0

For 10/0>v'4-1, the beam oscillates about the straight beam axis with its

~4ft'2 9
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maximum negative deflection from the horizontal equal to the maximum posi-

tive deflection. These results have been derived in somewhat different

form in references 5 to 8. The present form of the results is more com-

pact, however.

;W

J.
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Chapter 3

DYNAMIC STABILITY OF INITIALLY BUCKLED BEAMS

UNDER UNIFORN RANDOM PRESSURE

An important consideration in the study of critical random loading

of initially buckled beams is the definition of what constitutes insta-

bility and the method of calculation of that critical loading. If it is

supposed that for low levels of spectral density of loading .the beam vi-

brates about its buckled equilibrium position while at high levels of

spectral density the beam snaps-through repeatedly and vibrates about its

straight zero-deflection position, then presumably there is a critical

value or range of spectral density value for which snap-through is first

initiated.

In reference 2 the similar problem of snap-through of a shallow circle

the deflection function. With such an approximation it is possible to draw

curves of constant energy and to define a critical value of energy which

divides stable and unstable regions. The structure is then said to become

unstable when the energy content, the sum of kinetic energy and strain

energy of the structure, becomes equal to or exceeds this critical

value. When many terms are considered an energy criterion is not readily

discernible. Thus an alternate definition of instability is taken herein

as the center deflection of the beam becoming less than zero. Such a cri-

terion is implicit in tha derivation cf critical pressures for beams sub-

jected to step-loading and impulse loading.
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With this definition of instability it becomes necessary to integrate

the equations of motion of the beam. The equations of motion for symme-

tric motion of a simple supported beam are given by Eqs.(l.11) as

d2;M 6m 2
* ~dTm" d2 •-•F" + [(~~~~2m-1)2]2')(mW61 ~i

pM 1,2,*3,. (3.1a) .;L

1 - n (2n-1) 2 ( n+•06n1)2 (3.1b)

To integrate these nonlinear equations of motion, a fourth-order Runge-

Kutta method of numerical integration (reference 13) was used. A random

loading function having a Gaussian distribution with a mean of zero and

a specified deviation 0 was generated. The loading function consists of

steps which are constant over a given constant 'Increment of time AT. A

typical generated time history of loading is shown in Fig. 8. The statis-

tics of tNe distribution have been studied in references 2 and 14 from

which the value of the power spectral density parameter can be determined

0. as

20 o" AT (3.2)

In the numerical integration process, the constdnt integration time step
was taken as some integral division of AT, generally AT/5. The number of

terms in the Fourier series expansion of the deflection function was taken

as three in all cases.
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In. the. analysis of the response of a structure to random loading, the

results obtained can only be presented in the form of probability distri-

butions of certain events or as averages of certain quantities. A specific

response case is of interest only for its contribution to the probability

distribution or average rather than for the details. This is illustrated

in Fig. 9 where three diffe.-ent response-time histories are shown for dif-

ferent loadings having the same power spectral density. One case snaps
from one buckled position to the other repeatedly within three periods of

4.lowest unstressed beam frequency, another meanders and snaps through only

at the end of the third period, while the third exhibits an intermediate

behavior. A first attempt at obtaining crucial data was to calculate prob-

ability curves for first snap-through of initially buckled beams, the so-

called "first passage" problem.

3.1 Monte-Carlo Determination of First Snap-Through
Probability

'The technique used to obtain probability curves for the time required

for snap-through to occur was to assign a value of the buckle amplitude W-0

the time step AT, the damping coefficient ~,the mean load value taken

as 0.0 in all calculations, the standard deviation of the load history Jy

and an arbitrary "seed" value IX, an integer having ten or fewer digits.

The equations of motion were integrated until the total center deflection

changed sign or until the maximum value of time that was chosen-to be con-

sidered was reached. The time interval in which this occurred was recorded.

The random number generated "seed" value at this time was then used as the

OK starting point for the next run. This procedure was repeatedt 6000 times
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for each set of values of the parameters. In all cases, the initial val-

ues of the Fourier sereis terms and their first time derivative were taken

as zero. The end result of these runs was a probability versus time curve

for "snap-through" occurring in less than the stated time for a particular

set of parameters. The self-contained computer program for this process

is given in Appendix A.

In Fig. 10 and Table 1 are shown the results obtained for zero damp-

ing and various values of the initial buckle amplitude ratio w0 and power

spectral density parameter S0 . Although the curves were obtained for AT

equal to 0.10 in all cases, the probability curves for other values of AT

and 5 yielding the same value of S0 should be similar as indicated by the

results shown in Table 2. The variation of the probability of snap-through

occurring in less than a given time for a beam with a given buckle ampli-

tude increases, of course, as the power spectral density increases.

The results of Fig. 10 do not readily indicate any relationships be-

tween the sets of curves for various values of initial buckle amplitude

Wo" These relationships, however, may be deduced from consideration of

Eqs.(2.1) when only one term is retained in the infinite series, i.e., I
diT- + ¼ = (3.3a)

If Eq.(3.3a) is divided by the following is obtained
0

c2w~i

d~0T 0 d.7 (3.3b)
ddw)' wo T + w~\~.0 0 0
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Since the first term predominates in the series, the above equation indi-
cates that initially buckled beams having the same modified loading func- :

tionp/w as a function of modified timewoTwill have nearlyidentical

deflection ratios as a function of ý T. Since the deviation of 1o
the random loading is a measure of the load intensity, these results sug- r. -

gest that random loadings having the same spectral density value of

2 2
0 ciOAT (3.4)

Sw w
WO 0 0

should yield nearly identical probability curves as a function of woT.

That this conclusion is reasonably correct is indicated by the curves

of Fig. 10 replotted in Fig. 11. The various curves show a monotonic in-
-2 -5.

crease of probability fucntion as the parameter o 0AT/wo increases. Only

two of the sets of values for different values of W yield the same value
of the modified spectral density parameter, (a) w00.5,a0--0.25, ,&T= 0.1

and (b) w0-2,j0-=8,, T= 0.1. Where the-data for the two sets of values

overlap, the values are virtually identical. A comparison of the results

is given in Table 3.

The effect of damping on the probability curves is indicated by the

results given in Table 4 and Fig. 12 where probability values for a beam

with an initial buckle amplitude ratio of 1.0 subjected to loadings having

the same power spectral density parameter are shown by the solid curves. _')N

The results indicate that small damping has little effect on the probabil-

ity of first snap-through although increasing damping significantly re-

duces the probability of snap-through. The one term equation of motion,

13' "1
ftz
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Table 3: Comparison of Correlated Probability Data

A =0.0, AT 0.1

0-0.5 w =2

2.0 0.7 0.4

6. 060 0.0

S8.0 0.764 0.774

10.0 0.862 0.861
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Eq.(3.3b), indicate that these curves should be nea-ly identical for beams

of different initial buckle amplitudes Wo having the same value of j011 a&T, and ;Aw0 Results calculated for beams with values of w0 equal to

2 and 10 and with appropriate values ofc 0 and i are given in Table 5 and

are shown in Fig. 13. The agreement between the various results is quite

satisfactory.

A further correlating parameter for these results is suggested by

the investigation of reference 15 where the primary white noise spectral

density parameter S can be shown to be related to the simulation parame-

ters by ]44"

j T

In reference 15 the results were found tobe insensitive to the additional

parameter . It is possible then that beams of different initial ampli-

tudes having the same value of

0 ./ 0  w 0i.w

woula have similar probability curves as a function of 0 T. Additional

results given in Table 5 and shown in Fig. 13 indicate that this corre-

parameter is not valid, however, sin•. the curves of Fig. 13 although

coinciding quite well with the corresponding curve of Fig. 12. In Fig.

12 the results indicate that beams with values of S/4 from 1.25 to

"should have identical probability curves. This same result is apparent
A2 -5

in Fig. 13. In Fig. 12, howeverthý value of 0AT/wo is equal to 0.1

whereas in Fig. 13 the value of j6T/w is equal to 1. Thus j&T/8j
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Table 5: Continued

i ~T > T <0 C -0 cr ~u.2K 0.05 CFO8

N4 P(TcrT)

0.0 2.0 80 0.013

2.0 4.0 1087 0.195

6. 00 1477 0.441

6.0 8.0 1154 0.633

8.0 10.0 721 0.753

j.10.0 12.0 482 0.834

12.0 14.0 332 0.889

S14.0 16.0 213 0.924

-16.0 
18.0 140 0.948

18.0 20.0 121 0.968

ýZ~
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and <;OtAT/w are apparently separate parameters which define the probabil-

ity curves. The curves of Fig. 11 for equal to 0 are thus upper bounds

to the probability curves for beams with other values of and should be

valid for values of the modified spectral density parameter S/ 0 greater
than about 1.

Although the results indicate that sinall damping has little effectJ
on the probability of first snap-through, sinall amounts of damping do,

however, have a significant effect on the response history. In Fig. 14

the response of beams having a buckle amplitude ratio of 1.0 but differ-

ii ent values of the damping parameter and--subjected to the same load his-
tory is shown . For no damping the beam vibrates violently with increas-

ing amplitude and increasing frequency, a phenomenon which is in accord

with the approximate variation of frequency with amplitude derived in

Section 2.4. Small amounts of damping decrease the amplitude of vibra-

tion although the beam continues to snap back and forth. Finally suffi-

ciently large damping causes the beam to snap-through once after which

* -it vibrates about the buckled equilibrium positions on the opposite side

of the straight axis. If the load were to be applied for a longer per-

iod the beam would undoubtedly snap back and forth but with a longer time

interval between the event.

'4' The axial load in the beam while this response occurs is shown in

_Fig. 15. With no damping the axial load eventually changes very rapidly

from compression to tension and back. Increasing amounts of damping tend

to smooth out the axial load variation.
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The foregoing results suggest that while probability curves of first

snap-through may be of interest they are of little use in determining cri-
tical ranges of spectral density parameter since these are presumably de-

fined by zero or small probability of first snap-through over an infinite

or sufficiently large time range. The calculations needed to produce this

i nformati on are quite costly since numerical integration of a large number

of cases over a very long time period would be required. In addition,

probability curves do not indicate any qualitative information about the

intensity of the snap-through motion. The results of snap-through events

separated by long intervals of time during which relatively small oscilla-

F ~tions about one of the two buckled equilib'eium positions occurs will, of

course, be of much less importance from the point of view of fatigue life

than frequent and large oscillations from one buckled position to the other.

F' An alternate calculation procedure yielding averages was therefore consid-

ered next as offering the possibility of more useful information.
.'j,

3.2 'Calculation of Average Snap -Through Frequency

j. In the previous section an attempt was made to determine a critical

snap-through spectral density parameter based on a calculation of the

spectral density parameter for which the probability of snap-through was

nearly ;4oro for all time.. A description of the behavior of the initially !i

buckled beam can be based on time averages rather than ensemble averages,

however. The computer program developed for the Monte-Carlo calculation

of probability values was modified, as shown in Appendix B, to calculate

the response of a compressed beam, bickled or unbuckled, over any desired
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length of time and to obtain time averages of various quantities at stated

intervals. The primary object of investigation is the average frequency

of snap-through, defined as the number of zero crossings N(T) of the maxi-

mum deflection divided by the time T, i.e.,

NTT

The procedure used was to generate the simulated random pressure dis-

tribution described in the previous section and to calculate the response

by means of a forth-order Runge-Kutta integration of the equations of mo-

tion, Eqs.(3.1), using three modes. The number of crossings of the zero

axis of the maximum deflection function, both from above and from below,

was counted-during the calculation procedure. At stated intervals, a time

average of the crossing rate was calculated. It was observed that this

calculated rate was reasonably constant when the time was sufficiently long,

and that different loading sequences led to essentially the same result.

Some of the results are shown in Table 6. The time averages shown for 0

equal to 10. 0 suggest the calculation of a critical spectral density parame-

ter based on the average frequency vanishing is becoming very small since

for i0 equal to 10 the average frequency is zero whereas for j0 equal to

100 the average frequency of snap-through is 1.56. Additional calculations

were made to define curves of average frequency as a function of the spec-

tral density parameter S. These are given in Table 7 where the average

zero-crossing frequency at the end of the integrated response is shown for

beams of varying initial buckle amplitudes. The maximum final parameter
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used to calcualte the time averages was first taken as 31416.0 (about 5000

uncompressed beam fundamental mode periods. In later calculations Tmax was

reduced to one-half and later to one-quarter of this value since the final

result did not change significantly. The first set of results in Table 7

are for an uncompressed beam (W=NO= 0). In this case the average zero-

crossing frequency does not vanish as the standard deviation of the load-

ing function becomes small but appears to approach a constant value of

about 0.34. It is shown in reference 16 that a nonlinear single-degree-of-

freedom system of the Duffing type has an expected zero-crossing frequency

equal to the undamped natural frequency of the system. In the present case

the beam would have 2 crossings in a value of T equal to 2Tr so that the ex-

pected value of f would be 1/n or about 0.32 which is very close to the

calculated value.

For other values of initial buckle amplitude the results obtained by

varying the spectral density parameter of the loading indicate the exis-

tence of a critical value below which snap-through does not occur-or rarely

occurs. THe results obtained are plotted as a function of the parameter S

of reference 15 in Fig. 16.

The results indicate as in the previous section, that the parameter

is not the sole parameter that affects the results. Many of the calcula-

tions were made for • at AT both equal to 0.1 and varying jo, which yield

single curves for average frequency as a function of S. Additional calcu- 1

lations for w equal to 10 and 20, with different values of • and AT

yielded curves or points which do not coincide. The curves indicate how-

ever, that the critical value of S for a beam having a given initial buckle

59



.4-J

0u

V)41-
0Cu,

044

0 II I

100
MINJ

60~



amplitude i0 may be relatively insensitive to the variation of the various

parameters.

For 0 equal to unity the critical value of S, the spectral density

parameter, appears to be very small on the order of 10-3, wheras for

These values are roughly in accord with the predictions of the correlating

prameter / which, if the value of S is 10 for w0 equal to unity,

would yield values of 10 for w0 of 10 and 160 for w0 of 20. This conjec-

ture is tested in Fig. 17 where the results for initially buckled beams

are replotted. The frequency has been modified by division by i., since

the results should depend on i 0 T, while the spectral density parameter has

been divided by w. It will be seen that th, results for the beams of dif-

ferent initial buckle amplitudes appeal to nearly coincide in the vicinity

of the critical value of Si/Z. Thus an estimate of the critical spectral

density parameter for snap-through and subsequent oscillation between buckled

equilibrium positions is given by (3.5)

-4i
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Chapter 4

UNIFORM RANDOM PRESSURE

4.1 Numerical Integration Results

Although knowledge of thie critical spectral density of loading is

useful, it is also of interest to determine the expected average and root-

mean-square (RMS) deflections and stresses of the beam since these affect

the fatigue life of the structure. During the integration process which

led to the result of the maximum preceding chapter, a record was kept of

the R?¶S deflections and stresses at the beam center. The integrated de-

flections and stresses Lnd their squaresover the time period were calcu-

lated using the Simpson's Rule formula (reference 17).

X S2n,f~ xd *"-Lf +4(f +
f(x)dx + f+f3 +...+fn.)+ (4.1)

At stated times the average and RMS deflection and stresses were obtained

as

-2 >½, 1 -2 )dg(4.2a) !.,:!!i!, , <Wax fWmaxg '
T

<x(-I- + (4.2b)

0
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2 where

,i .. .. n-1
Wmax =(-1) (nio @n ) (4.3a)

and the stresses at the top and bottom of the beam, considered positive if

j compression, are given by

-+1-2 1 (Wn+W6n)29iqax" 0 (no•I''.13,5..

S~n-1
it ('i)Tn2 (WnOn

r (wi.1, ('I)n) (4.3b)

It was observed that after a sufficiently long time period the averaged

values became reasonably constant. The mean values calculated at the end

; of the maximum time period considered in each case are tabulated in Table

8. Only the RMS stress having the greatest magnitude is given. For suf-
,... ficiently largevalues of the parameter Sthe two values of stress were

essentially the same.

The tabulated values are shown by the indiviaual points in Figure 18

"and 19 together With some theoretical results. which will be discussed

later. The res~ts exhibit remarkably little scatter and thus indicate

r 'the very primary importance of the spectral density parameter S and the

A1esser importance of the damping parameter ;.

The results also indicate, as would be expected, that the effect of

initial buckling becomes less important as the spectral density parameter

S• increases. The deflections and stresses are then large enough for the

beam behavior to be similar to that of an unbuckled beam under large load-

ing. The RMS deflections appear to first decrease as the spectral density

2 64
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Table 8: Simulated RMS Values

T<-2 > 2 -2k
Wo o T Wmax >½ max>

0 0.01 0.1 0.1 1.25 x 10-3 0.07 0.13

1.00 1.25 x 10" 0.60 1.14

.10.00 1.25x 10 2.91 7.14

31.62 1.25 x 102 5.27 17.40

100.00 1.25 x 10 9.32 43.07

316.22 1.25 x 104  16.05 106.8

1000.00 1.25 x 105 25.96 267.1

1 0.01 0.1 0.1 1.25x 10 3  0.99 2.71

0.32 1.25 x 10 2  0.91 1.98

1.00 1.25 x 10 1  1.11 2.23

10 000 1.25 x 10 3.11 7.36

'3.21..25x10~ 5.38 17.55

100.00 1.25x103 9.39 44.43

., 100.00 1.25x103  9.38 42.94

.316.22 1.0 1.25 x 103 9.52 44.18

316.22 0.1 1.25x 104  16.24 108.2

1000.00 0.1 1.25 x 105  26.19 270.6

2 1000.00 0.1 0 1. 25 105 26.21 270.5

• 10 10.00 0.1 0.2 6.25 9.93 6.29

' 10.00 0.1 0.1 1.25 x 10 9.80 20.68

10.00 0.1 0.1 .1.25 x 10 9.82 20.52

7.07 0.2 0.1 1.25 x 10 9.85 20.15

10.00 0.1 0.059 2.12 x 10 9.63 21.91

9.19 0.2 0.1 2.11x 10 9.69 21.37

13.00 0.1 0.1 2.11 x 10 9.61 22.23

15.00 0.1 0.1 2.81 x 10 9.43 23.42

10.00 0.1 0.144 2.84x 10 9.41 23.57

10.00 0.1 0.031 4.03 x 10 9.07 26.23

12.73 0.2 0.1 4.05x 10 9.29 24.41
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Table 8: Continued

--2 -2WO CF AT " wax> <max

10 10.00 0.2 0.1 4.05 x 10 9.29 24.41

17.68 0,2 0.1 7.81x10 8.64 29.20

"31.62 0.1 0.1 1.25 x 102 8.40 33.00

100.00 0.1 1.0 1..5 x 102 8.60 32.35

10.00 0.1 0.01 1.25 x 102  8.27 32.52

S 22.36 0.2 0.1 1.25 x 102  8.46 30.86

100.00 0.1 0.1 1.25 x 103 10.56 50.77

100.00 0.1 0.1 1.25 x 103  10.57 52.89

100.00 0.1 0.1 1.25 x 103  10.52 50.49

10.00 0.1 0.001 1.25 x 103 8.40 37.52

70.71 0.2 0.1 1.25 x 103 10.18 42.34

316.22 0.1 0.1 1.25,x10 4  16.58 102.4

10 0.1 0.000-1 1.25 x 10 8.26 38.72

1000 0.1 0"1 1.25 x 105  26.44 263.22I
20 80.00 0.05 0.2 2.00 x 102 18.58 63.75

.40.00 0.1 0.1 2.00 x102 18.82 54.47

52.00 0.1 0.1 3.38x102  18.08 63.38

104.00 0.05 0.2 3.38 x 102  17.33 70.82

60.00 0.1 0.1 4.50 x 102 17.39 69.41

100.00 0.05 0.1 6.25 x 102 16.14 82.15

144.00 0.05 0.2 6.48 x 102  15.94 83.16

100.00 0.1 0.1 1.25 x 103  15.81 84.93

200.00 0.05 0.2 1.25 x 103  15.41 92.45

252.98 0.05 0.2 2.00 x 103  15.50 98.72

316'22 0.05 0.1 6.25 x 103  16.73 118.7
,••316-22 0.1 0.1 1.25 x 10' 17.98 110.3

800.00 0.05 0.2 2.00 x 104  20.41 153.7

1000.00 0.05 011 6.25 x 104  24.72 211.8

1000.00 0.1 0.1 1.25 x 105  24.51 184.3

2529.82 0.05 0.2 2.00'x105 31.90 352.5

8000.00 0.05 0,2 2.00x106  49.34 829.2

"50 31.62 0.1 0.1 1.25x 102  49.91 89.32

100.00 0.1 0.1 1.25 x103  48.97 106.2
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parameter increases and to then increase. This phenomenon is explanable

as the result of a shift in the average deflection from the buckled posi-

tion to the unbuckled beam reference axis. THe mean position of the

buckled beam would tend to shift toward the straight reference axis be-

cause of the softeni.ng spring characteristic for inward deflections and

hardening spring characteristic for outward deflections exhibited in Fig.

2. Unfortunately the few results obtained for the variation of the aver-

age deflection with S are insufficient to define the shift. The stress

behavior is not as consistent, however.

4.2 Approximate Analytical Investigation

The computation effort involved in these calculations is very great,

so great as to motivate an approximate analytical treatment of the problem.

The method of equivalent linearization (reference 18) which was used in

reference 15 for unbuckled beams suggests itself as a possible means of ob-0ýA' tai~ning an approximate solution which can be compared to the numerical in-

tegration results for an accuracy check. There are certain complications

in the present case, however, The method of equivalent linearization has

been applied successfully in cases of nonlinearities which imply a zero

mean displacement. In the present case, however, the restoring force is

I:i reasonably symmetrical only for small motion about the buckled equilibrium

position and for large snap-through motion about the straight reference

position. Between these two extremes the mean displacement shifts from

the buckled to the unbuckled position.

N 6
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The two extrenmi cases are considered herein as providing possible

bounds on the RMS displacements and stresses. The method of equivalent

linearization involves replacing the nonlinear terms in each of Eqs.(3.1)

by an equivalent linear term. The equivalent linear term is determined

byrequiring that the mean-square error be a minimum. For small motion

about the buckled equilibrium position let the nonlinear terms in each of

Eqs.(3.1) be replaced by a term of the form k I . Then the errors are

given by

2Ien 2el 2M-) + Wo2, + Z; W2-1)2Z.

0L nnl m

Then

2
'aem . -m> <e w > n=,2,3,... (4.4b)

yielding

S2 z •- -2~n-2>•- ~~<w n•-. -- -1÷ "o _

1+ M 1,2,3,... (4.4c)
nl

Considerations similar to those of reference 12 lead to the following re-

sult for white noise

•o I

,i~A"
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) 2 I -2OD 32kin •:'•km (2m-I1"(1 o.+ 1- 2 2 -2 (4.5a)

with ii

Dm =2(km+k)+ (k-- k' (4.5b)

The mean-square deflections are then given by

-2 > .-2 (_ (.46)<Wmax> w +16S (.46)
m=1 n=1mn

which is the sum of the square of the "mean" deflection W0 and the mean-

square of the deflections with respect to that mean value. The mean-

,quare stresses are given by

>+ I<(max> : NO " rO'n~'k

-2 2_ _U

w+ + [ 16 ( h (-I)m+n(2m-1)(2n-1)

+• O r/m=1 n=1 Dmn

|l (-1)n'(2n-1 U
t16 In- )

+321g 211+ 32g2'Z (4.7)
m= in 1 Dmn

The average stress is not equal to zero but is given by

i7



Sr, 1(48
%v ýO O r n=1 (4.8

Thus the me~an-square stress given by Eq,(4.6b) is the sum of the square of

the averaje stress and the-mean-square stress with respect to the mean

value, i.e...

+2 [j (0 -1) m (2m-1)(2n-,1)

max- av rnif= Dmn

t 16io +0 Li2~~h 32§2mii2. (4.9)
- r 0 I

When motion about a mean straight reference position is considered,

the nonlinear terms in Eqs. (3.1) are replaced by equivalent linear expres-

sions km(ifm+%06mi). The error is then written as

~~~2_o 1 2+ (2 )2(-+6 )l ~~~
m ( L 0  n=1nO1 nifi)M Omi)

Mn=1*2v39 ... (4.10a)

so that the criteria for the determiniation of km are

<=mw-i6j 0 M 1 *2 s3 ... (4.10b)

Thus

I7



2 > m 21 22 23
+ (2n-1) < (;M+W6 ) (n +%O6n1) >1 wOI

(4,11a)

and for white noise is given by

N-0

The mean square deflection is now

%ax > ~ * 16 v-3. In-
M n= MR

while the mean square deflection is given by

/ 2

max k

V~m= n=1 mn

"p.ý
+373



0

and the mean square stress about this average.

4.3 Comparison of Simulated and Equivalent

Linearization Results

Equations (4.5) and (4.11b) were solved by a quadratic iteration

process as in reference 15. The results were found to be quite insensi-

tive to the viscous damping parameter p so that most calculations were

made with this parameter taken equal to zero. In this case 1/Dmn van-

ishes if m is not equal to n and is equal to 1/ 4 km if m and n are equal.

Thus single summations are reduced to a single term while double summa-

tions are reduced to single summations, thereby simplifying the computa-

tions. Since the numerical integration results involved only three Four-

ier series terms, the number of terms in the approximate solutions were

restricted to three for comparison purposes. The RMS deflections and

stresses predicted by Eqs(4.5) and (4.11b) are shown in Figs. 18 and 19

by the solid and dashed curves together with the points obtained by numer-

ical integration.

It will be noted that the deflections obtained by the numerical inte-

gration are reasonably bracketed by the two sets of approximate curves.

The PR4S deflections with respect to the straight reference position ap-

proach the static buckle deflection for small excitation and merge with

the curve for large snap-through deflections about the straight reference

position as the excitation increases. For an unbuckled beam (W"N 0)

the equivalent linearization results reduce to a single curve. In this

case the numerical integration and equivalent linearization results are

in very good agreement over a quite large range of the parameter .
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The approximate calculations indicate similar RMS deflections from

both equations as the spectral density parameter increases. In agree-

rvent with the numerical integratiun results, the deflection for all values

of ,0 tend to become equal. The equivalent linearization deflections ap-

pear to become increasingly larger than those obtained by numerical inte-

gration for large S.' This disagreement is possibly due to use of the

nethod of equivalent linearization beyond its range of applicability (see,

however ref.16). Certainly the beam is very highly nonlinear for large

deformat'ions. It is also possible that the constant time increment usedQ

in the simulation process for the random loading is too large. The aver-

age period of vibration about the straight position decreases as the ex-

citation increases, whereas the time increment ove& which.the loading re-

mains constant was not decreased. This could conceivably result in de-

creased deflections. Additional calculations to prove or disprove this

contention would be quite costly, however.

Also shown in Fig. 18 are the critical values of the spectral density

parameter S given by Eq.(3.5). The RMS defiections appear to only first

depart significantly from the static value at this point rather than an

abrupt discontinuity of RM.S deflection.

Similar agreement is found for simulated and equivalent linearization

results in Fig. 19. There is again a transition of the simulated stresses

from those given for vibrations about the buckled position to vibrations

about the unbuckled position.. The somewhat strange behavior of the appro-

priate theoretical results consisting of the stresses of the two approxi-

mate results crossing for large Wo' but not for 0 of unity, is confirmed by

~F 75
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the simulated results. Again the stresses given by equivalent lineariza-

tion deviate from the simulated results for large S. The approximate re-

sults are conservative, however, and are, thus useful. Indeed, they may

be more reliable for the reasons discussed earlier.

Since convergent stresses require the consideration of a large num-

ber of terms, calculations for a parametric study were made with the use

of 100 Fourier series terms. The results are presented in Table 9 for

vibrations about the static buckled position while results for vibrations

about the straight reference position are given in Table 10. The RMS de-

flection, average stress, and RMS stress with respect to the average are

given for S stress with respect to the average are given for S ranging

from 10 to 106 for various values of Wo. In Table 9 stress results are I
presented for both the top and bottom fibers of the beam under the assump-

tion of h/r equal to VT (a rectangular section). For vibrations about the

straight position the RtMS and average stresses at the top and bottom of a

beam syimetrical about the centroidal axis are identical and are tabulated

I n Table 10 with h/r also equal to r3 for that case.

The calculated RMS deflections about the average position are shown

graphically in Fig. 20 and exhibit a regular behavior. The results for

vibrations about the buckled position indicate as expected that the beam

becomes stiffer as the initial buckled amplitude increasing with constant

excitation resulting in decreasing RMS deflection. The unbuckled beam

becomes less stiff as the axial load increases and the RMS deflection be-

comes greater for constant excitation. This explains the results for beams

of increasing W vibrating about the straight position since they can be

considered to be unbuckled beams with axial load parameters NO greater
1 -2 .than unity and equal to 1+ Two.
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The stress results are not shown graphically since there is no regular

pattern that can be plotted without producing confusion.
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Chapter 5

EXPERIMENTAL AND ANALYTICAL INVESTIGATION OF

RMS RESPONSE OF CLAMPED BEAMS UNDER RANDOM LOADING

Experimental studies were performed to investigate the degree of

agreement between analytical and experimental results. These experimen-

tal set-ups were guided by previous investigations of the effects of

structural heating on aerospace vehicle structures loaded by random uni-

form pressure (reference 1).

5.1 Test Specimens mdlso O6 0 s n .C bi 3  h a

JL The material of the test specimens was aluminum Type 2024 Ducommun,

which has a Young's modulus of 10.6x 10 psi and 0.10 in The ma-

terial was flexible enough to be snapped or excited by uniform sound pres-

sure. The beam specimens were 8.125 in. long. and 1/4 in. wide, and had a

thickness of 0.02 in.

5.2 Test Set-up.

The overall test set-up for the nonlinear vibrations of the straight

and buckled beam is shown in Fig.' 21. The schematic set-up for measuring

the strain response of the beam is shown in Fig. 22. A speaker with a 12

in. diameter was attached to one end of a tapered acoustic box. The other

end is closed by a slotted board to which specimens were mounted (Figs. 23

atud 24). The noise emitted ýy the speaker impinges on the beam specimen

through the slot. A ý,tr~in gage wL; installed at the beam center for mea-

surement of the strain response of the beam. The box was made from one-
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Strain Response of Beam
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FRONT VIEW

:1-
Fig. 23. Schematic Diagram of the Acoustic Box, Front View
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LEFT VIEW

Fig. 24. Schematic Diagram of the Acoustic Box, Left View
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inch and 3/4 in. plywood, so that it had the required rigidity to prevent

vibration interaction with the speaker..

5.3 Sound Pressure Level Calibration

A calibration set up sketch for measuring sound pressure level vs. RMS

valucs of input voltage for the speaker is shorn in Fig. 25. The microphone

supplied with the sound level meter was a prezoelectric ceramic microphone

developed expressly for sound level meter use. To give a flat response to

sound of random incidence from 20Hz to 12 KZ, a sound level meter was used

of type 1551-C GenRad.

The sound level meter was first calibrated linearly. Then, the con-

stant values of k for a different scale (NOBE) in terins of psi per volt
nobe

was obtained using a sinusoidal signal. THe calibration curves are shown

in Fig. 26.

To measure the power spectral density of the signal in terms of (psi)2

sec., a spectral analyzer was used (HP Type 3850) and the scope uniit of the

spectral analyzer was photographed. from those photographs, the power spec-

tral density of output signal of the sound level meter S0 in units of

(psi)jsec. can be determined by squaring the amplitude of scope, dividing

it by the bandwidth of spectral analyzer, and then multiplying by the square

of the constant value of knobe and the square cf the beam width. The band-

width of the spectral analyzer was 30Hz and the time sweep was 10 seconds

per division. The calibration curve of RMS input voltage versus S the

nondimensional spectral density parameter, found by these measurements isHi shown in Fig. 27.

94 h
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The distribution of sound pressure level across the board slot of

acoustic box for sinusoidal signal with frequency 115Hz is shown in Fig.

28. As can be seen from the figure, the pressure across the slot is al-

most uniform.

S-5.4 Test Procedure

The beam was mounted on the slotted board (see Fig. 29) and was sub-

jected to pressure history which was generated by a random noise

generator (General Radio Type 1381) with range of frequency from 2Hz to

2000Hz. The signal was amplified by a power amplifier with maximum power

of about one hundred watts. THe RMS input voltage of the speaker was mea-

sured by an RMS meter (B&K Type 2409) with a bandwidth of 3Hz in 100 sec.

The output of the strain gage was calibrated by using a dial gage indica-

tor so that the calibration factor was 100 pin/in per 16.6 mv

1.10 p in/in ) Then the RMS value of the dynamic strain of the beam,

i.e., the RMS value of the total strain minus the static strain, was mea-

sured by using an RMS meter with a bandwidth of 3Hz in 100 sec. During a

test run, the experimental data was collected within a period of about two

to three minutes, in order to obtain almost constant value for the strain.

The value of the excitation parameter S was obtained by using the calibra-

tion graph of RMS input voltage of the speaker versus the power spectral

density of sound-pressure level (Fig.27).

The power spectral density of input voltage o',' the speaker was found

to be relatively constant, approximating white noise (Fig. 30). The spec-

tral density of the acoustic pressure was not uniform, however, due to the

effects v" the speaker distortion. A i-Gpresentative acoustic pressure
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spectrum at the box opening during random loading test of beam specimens

is shown in Fig. 31. In the spectral analysis shown in Fig. 31, the an-

alysis bandwidth was 30 Hz and the sample being analyzed was of 50 sec.

duration.

5.5 Measurement of Damplngi Coefficient

Probably the most frequently used experimental method is measurement

of the decay of free vibrations. When a syptein has been set into free vi-

bration by any means, the damping ratio can be determined from the ratio

of two displacement amplitudes measured at an interval of m cycles. Thus,

if vn is the amplitude of vibration at any time and vn+m is the amplitude

m cycles later, the damping ratio is given by

•, I •(5.1)

where

m- (5.2)

nim

The response curve of aluminum beams for the critical damping ratio

C, sh•in in Fig. 32, was measured by a strain gage at the center of the

beam. The value of { calculated by using Eqs.(5.1) and (5.2) was found

to be 0.05.
The damping per unit length 13is equal to 2pAwl C where the first cir- ,

cular natural frequency of the beam w, is given by

W.21Tf (5.3a)

1
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wi th

Il fi 1 .028-~.i (5.3b)

2' For aluminum

4w01)002(.2)6O(*5,) 5.12x 10-5  lb-sec./in2  (.a

and

2u
0.2 (5.4b)

5.6 Beam Subjected to Random Loading

tinThe beam was tested in the unstressed and unbuckled position and also

wscompressed tob..ckle with the non-dimensional initial static deflec-
tini approximately equal to 21.6, 28,8 and 55.3. The values of Wwere

obtained from the static strain measurements and the theoretical relation-

shpfor the maximum static strain of a buckled clamped beam.

C U~ (4+v,20  (5.5)
L

The RMS dynamic strain edynamic relative to the static strain was measured

by another RI4S meter (B&K Type 2419). A typical record of strain spectral

10 density is shown in Fig. 33. The RMS values of the non-dimensional dynamic
the ente <r 2>h s ~ tstress parameter at th etr<which isequal to n (ic /v ~r)

are shown in Table 11. Unfortunately the power imparted to the beam was

41
105
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insufficient to cause snap-through,. a fact which was not ascertained until

very late in the lnvestisation.

5.7 Analytical Investigation

An approximate analytical investigation of the RMS stresses and de-

flections of a clamped beam which vibrates about the buckled equilibrium

positiorn was ffade b.y, expanding the beamn deflection function irn a series

of syffTaetric Aormal modes of vibration of the straight beam

m

where i s the m' vibration mode of the unstressed beami satisfying thei rel ati ons
4

m 4

f~n~nd4 = 5.h

The modal functions and their derivatives are tabulated in reference 19.

Various integrals involving the modal functions are evaluated in reference

20.

Equation (1.6) with the aid of Eqs.( 1.4)(1.5a), and (6.7) and the

use of the Galerkin method then yields the following equations for de-

termi ningW
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AII

d1w d Nmmm -m 2f =N
dt p A dýt +mSf 2.~ +L pmn

2 4
2rr+ N8E LT w0

.A + 0 Q (m 1.2,.. (5.8)

wi th 2 mnnn O ~

N-A +--2~ w w-2vrwD (5.9)

1G0 --,n mO•• no (2n i;)d•

QM~ Om (5.10)
r~~mn Y ULM

0

(5.12)

if O
4

nd ad aretabulted n rfeene 9

Gm ~mC) os109~ d



The application of the method of equivalent linearization, whereby

the terms iri Eq.(5.8) involving the deflection coefficients are replacedk2
by k Wmw, then' yields the following equations for km

2 -2 4 2 2 :256Wok Y 2'
O mm 'Onn
_ n16n 4  n1 (yn-'164)Dmn

1n y62 mk Kma 2n -6 ymkmS

•m n = mn m

a C, a K K +2K pK2 • npn (5.13)
n -I p-1 q-1 Ynypyq mp nq

The RMS displacements are now given by

+'1
2 -2 6j m n mJ7 0n71< > = +16n6 (5.14)

%ax > rn- n+ &'mm=-1 n=1 mnn

The average stresses are obtained from

"- N0-84S m n mnmn (5.5)
av 0 m= n-1YmYnDmn(

and the RMS stresses with respect to this mean are given by
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S46•• Z Zv1= n- P- q=1 mnmp nq

6-2h- = •2m°,,n n
+ 64n o•S -S

M n-1 d Ymynmn

4h 2. D 00 d2 om d 2 $n "'afn

+ 16n4 Z (5.16)
stress the_2 Dtj tt tesaim=1 n- 1 dc • m•n mn

Some calculations were made of the RMS stress with respect to the static

stress _

h-

"astatic -No -2 zWo (5.17)

Then

2>- -2
<(amax'istatic) 2> .<max >_2Oaestatic static

max av 2 av static) (5.18)

The results with $ taken equal to zero for convenience are compared

with the experimental results in Fig. 34. The experimental results are

seen to be considerably lower than the theoretical results. One cause of

this discrepancy may be conjectured to be the effect of the center strain

gage which tends to stiffen the beam yielding smaller deflections and

stresses. Another source of error is the nature of the random loading which

is not white noise when it impinges on the beam. The effect of a non-

constant loading spectrum is unexplored, however.
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CONCLUS IONS

The present investigation serves to cast some light in the behavior

of initially buckled beams utider random loading. A reasonable indication -

c'" Ithe critical spectral &c.nsity of loading required for beam snap-through

appears to be the vanishing of the average zero-crossing frequency of the

beam. While this criterion does rnot lead to a completely precise value,

due to the lengthy calculations required, an estimate of the critical power

spectral density parameter has been obtained as

An investigation of the RMS response of initially buckled simply supportedj

beams does not reveal any drastic change in the vicinity of the critical

spectral density.. The onset of snap-through does herald the possibility

of stress reversal, however.

Bounds in the RMS response have been obtained by considering vibra-

tions about the initial buckled position as an average and about the

straight reference position as an average, together with the method of

equivalent linearization. The results obtained by numierical simulation

of random loading indicate a smooth transition from the first to the sec-

ond type of behavior and in the limit are in good agreement with the ap-

proximate analytical values. The agreement between theory and experiment

for clamped beams is reasonable, but not conclusive.
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The results obtained suggest the need for better experimental as

well as better analytical techniques to furnish the required data. While

useful results have been obtained by numerical load simulation and in-

tegration of the differential equations of motion, the calculations are

quite costly and time consuming. Further studies on methods for esti-

mating the respový--4. of highly nonlinear structures for random loading

are thus required. These results are needed, to some extent, prior to

experimentation to help delineate the type of data to be measured and

the power requirements for the loading, the present experimental inves-

tigation would have profited from a delay until analytical results were

obtained.
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APPENDIX A

PROGRAM DRIBB3 FOR THE DETERMINATION

OF SNAP-THROUGH PROBABILITY
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APPENDIX B

PROGRM DRIBBZ FOR NUMERICAL INTEGRATION

OF THE EQUATIONS OF MOTION
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